Wait Types and correlation to other Performance info

	Wait Type
	Category
	Description
	Correlation to Other info

	ASYNC_DISKPOOL_LOCK
	IO (Restore DB)
	RARE During Backup and Restore (e.g. including zeroing out pages) threads written in parallel.
	Possible disk bottleneck. See disk perf counters for confirmation.

	ASYNC_IO_COMPLETION
	IO
	Waiting for asynchronous IO requests to complete.

Identify disk bottlenecks, using PERF Counters, Profiler,

::fn_virtualfilestats and SHOWPLAN

Any of the following will reduce these waits:

1. Adding additional IO bandwidth,

2. Balancing IO across other drives

3. Reducing IO with proper indexing

4. Check for bad query plans

5. Check for memory pressure
	See PERFMON Disk perf counters:

1. Disk sec/read
2. Disk sec/write

3. Disk queues
See PERFMON SQL Buffer Cache perf counters for memory pressure:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

See PERFMON SQL Access Methods for correct indexing:

1. Full Scans/sec

2. Index seeks/sec

Check IoStallMS – IoStallMS is the number of cumulative milliseconds of IO waits for a particular file. If IoStallMS is inordinately high for one or more files, you have a disk bottleneck.

1. select * from ::fn_virtualfilestats (dbid,file#)

2. select * from ::fn_virtualfilestats (dbid,-1) to list all files for a database.

SQL Profiler can be used to identify which TSQL statements do scans. Select the scans event class & events scan:started and scan:completed. Include the object Id data column. Save the profiler trace to a trace table, and then search for the scans event. The scan:completed event will provide associated IO so you can also search for high reads, writes, and duration.
Check SHOWPLAN for bad query plans

	CMEMTHREAD
	
	Waiting for thread safe memory objects
	

	CURSOR
	
	Asynch Cursor thread
	

	CXPACKET
	
	Parallel process waits. Possible skew of data possible lock of a range for this cpu meaning one parallel process is behind, etc.

In an OLTP environment, excessive CXPACKET waits can impact the throughput of other OLTP traffic.

In a DW environment, CXPACKET waits are expected for multiple proc environments.
	Check for parallelism – sp_Configure “max degree of parallelism”.

If max degree of parallelism = 0, you may want to do one of the following:

1. turn off parallelism entirely: set max degree of parallelism to 1

2. limit parallelism by setting max degree of parallelism to some number less than the total number of CPUs. For example if you have 8 procs, set max degree of parallelism to <=4.

	DBTABLE
	
	New Checkpoint request that is waiting for outstanding checkpoint request to complete
	See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

	DTC
	
	Waiting for Distributed Transaction Coordinator
	Check transaction isolation level

	EC
	
	Non-parallel synchronization between parent and child thread
	

	EXCHANGE
	
	Waiting on a parallel process to complete, shutdown or startup.

	Check for parallelism – sp_Configure “max degree of parallelism”.

If max degree of parallelism = 0, you may want to do one of the following:

1. turn off parallelism entirely: set max degree of parallelism to 1

2. limit parallelism by setting max degree of parallelism to some number less than the total number of CPUs. For example if you have 8 procs, set max degree of parallelism to <=4.

	EXECSYNC
	
	Query memory and spooling to disk
	

	IO_COMPLETION
	IO
	Waiting for IO requests to complete.

Identify disk bottlenecks, using PERF Counters, Profiler,

::fn_virtualfilestats and SHOWPLAN

Any of the following will reduce these waits:

1. Adding additional IO bandwidth,

2. Balancing IO across other drives

3. Reducing IO with proper indexing

4. Check for bad query plans
	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

See SQL Access Methods for correct indexing:

1. Full Scans/sec

2. Index seeks/sec

See memory perf counter

1. Page faults/sec

Check IoStallMS

1. select * from ::fn_virtualfilestats(dbid,file#)

SQL Profiler can be used to identify which TSQL statements do scan. Select the scans event class & events scan:started and scan:completed. Include the object Id data column. Save the profiler trace to a trace table, and then search for the scans event. The scan:completed event will provide associated IO so you can also search for high reads, writes, and duration.
Check SHOWPLAN for bad query plans

	LATCH_x
	Latch
	Latches are short term light weight synchronization objects. Latches are not held for the duration of a transaction.

“Plain” latches are generally not related to IO. These latches can be used for a variety of things, but they are not used to synchronize access to buffer pages (PAGELATCH_x is used for that).

Possibly the most common case is contention on internal caches (not the buffer pool pages), especially when using heaps and/or text.
	If high, check PERFMON for

1. memory pressure

2. SQL Latch waits (ms)

Look for LOG and Pagelatch_UP wait types.

Latch_x waits can often be alleviated by solving LOG and PAGELATCH_UP contention. In the absence of LOG and/or PAGELATCH_UP contention, the only other option is to partition the table/index in question in order to create multiple caches (the caches are per-index).

	LATCH_DT
	Latch
	Destroy Latch
	See LATCH_x

	LATCH_EX
	Latch
	Exclusive Latch
	See LATCH_x

	LATCH_KP
	Latch
	Keep Latch
	See LATCH_x

	LATCH_NL
	Latch
	Null Latch
	See LATCH_x

	LATCH_SH
	Latch
	Shared Latch
	See LATCH_x

	LATCH_UP
	Latch
	Update Latch
	See LATCH_x

	LCK_x
	Lock
	Possible transaction management issue.

1. For shared locks, check Isolation level for transaction.

2. Keep transaction as short as possible
	See SQL Locks perf counters

1.Lock wait time (ms)

Hint: check for memory pressure, which causes more physical IO, thus prolonging the duration of transactions and locks.

	LCK_M_BU
	Lock
	Bulk update lock
	See Lck_x

	LCK_M_IS
	Lock
	Intent Share lock
	See Lck_x

	LCK_M_IU
	Lock
	Intent Update lock
	See Lck_x

	LCK_M_IX
	Lock
	Intent Exclusive lock
	See Lck_x

	LCK_M_RIn_NL
	Lock
	Range Intent Null Lock
	See Lck_x

	LCK_M_RIn_S
	Lock
	Range Intent Shared lock
	See Lck_x

	LCK_M_RIn_U
	Lock
	Range Intent Update lock
	See Lck_x

	LCK_M_RIn_X
	Lock
	Range Intent Exclusive lock
	See Lck_x

	LCK_M_RS_S
	Lock
	Range Shared Shared (Key-Range) lock
	See Lck_x

	LCK_M_RS_U
	Lock
	Range Shared Update (key-range) lock
	See Lck_x

	LCK_M_RX_S
	Lock
	Range Exclusive shared (key-range)
	See Lck_x

	LCK_M_RX_U
	Lock
	Range Exclusive update (key-range) lock
	See Lck_x

	LCK_M_RX_X
	Lock
	Range Exclusive Exclusive (key-range)
	See Lck_x

	LCK_M_S
	Lock
	Shared Lock:
	See Lck_x

	LCK_M_SCH_M
	Lock
	Modify schema lock:
	See Lck_x

	LCK_M_SCH_S
	Lock
	Shared Schema (Stability) lock
	See Lck_x

	LCK_M_SIU
	Lock
	Share Intent Update lock
	See Lck_x

	LCK_M_SIX
	Lock
	Share Intent Exclusive lock
	See Lck_x

	LCK_M_U
	Lock
	Update lock.
	See Lck_x

	LCK_M_UIX
	Lock
	Update intent exclusive lock
	See Lck_x

	LCK_M_X
	Lock
	Exclusive lock
	See Lck_x

	LOGMGR
	Transaction Log
	Waiting for write requests to the transaction log to complete.

Identify disk bottlenecks, using PERF Counters, Profiler,

::fn_virtualfilestats and SHOWPLAN

Any of the following will reduce these waits:

1. Adding additional IO bandwidth,

2. Balancing IO across other drives

3. Moving / Isolating the transaction log on its own drive
	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

Check IoStallMS for tranlog

1. select * from ::fn_virtualfilestats(dbid,file#)

	MISCELLANEOUS
	
	Catch all wait type
	

	NETWORKIO
	
	Waiting on Network IO Completion. Waiting to read or write to a client on the network

This can occur if a client is in the middle of sending packets to SQL Server, or when SQL writes data to a client and is waiting for an ACK.

	Check NIC bandwidth. 100mbits is preferable to 10mbs.

	OLEDB
	
	OLEDB waits. Common causes are:

· SQL Server is waiting for client application to send data. Some examples include:

· 1. BULK INSERT

· 2. CONVERT (6.5 to 2000)

· 3. Full text

· 4. Linked server calls incl. four part name calls, remote procedure calls, openquery, openrowset etc.

· 5. Queries that access virtual tables, since these are implemented as OLEDB rowset providers.

	1. Check placement of client app including any file input read by the client and SQL Server data and log files. See PERFMON disk secs/read & disk secs/write. If disk secs/read are high, you may add additional IO bandwidth, balance IO across other drives, or move / isolate the database and transaction log on its own drives

2. Inspect TSQL code for RPC, Distributed (Linked Server) & Full Text Search. While SQL server supports these type queries, they are sometimes performance bottlenecks.

3. To get the SQL Statement involved in OLEDB waits, Select virtual table master..sysprocesses as follows:

a. SQL2000 Service Pack 3 Only

DECLARE @Handle binary(20)

SELECT @Handle = sql_handle FROM sysprocesses

WHERE waittype = 0x0042

SELECT * FROM ::fn_get_sql(@Handle)

b. SQL2000 RTM, SP1, SP2 – limited to 255 characters

dbcc inputbuffer (spid)

	PAGEIOLATCH_x
	
	Latches are short term synchronization objects. used to synchronize access to buffer pages. PageIOLatch is used for disk to memory transfers.
	If this is significant in percentage, it normally suggests disk IO subsystem issues. Check disk counters.

	PAGEIOLATCH_DT
	
	IO Page destroy latch
	See PAGEIOLATCH_x

	PAGEIOLATCH_EX
	
	IO Page latch exclusive
	See PAGEIOLATCH_x

	PAGEIOLATCH_KP
	
	IO Page latch keep
	See PAGEIOLATCH_x

	PAGEIOLATCH_NL
	
	IO Page latch null
	See PAGEIOLATCH_x

	PAGEIOLATCH_SH
	
	IO Page latch shared
	See PAGEIOLATCH_x

	PAGEIOLATCH_UP
	
	IO Page latch update
	See PAGEIOLATCH_x

	PAGELATCH_x
	
	Latches are short term light weight synchronization objects. Latches are not held for the duration of a transaction. Typical latching operations during row transfers to memory, controlling modifications to row offset table, etc. Consequently, the duration of latches is normally sensitive to available memory.
	If this is significant in percentage, it normally indicates cache contention.

	PAGELATCH_DT
	
	Page latch
	See PAGELATCH_x

	PAGELATCH_EX
	
	Page latch exclusive

Contention can be caused by issues other than IO or memory performance, for example, heavy concurrent inserts into the same index range can cause this type of contention. If a lot of inserts need to be placed on the same page they are serialized using the latch. A lot of inserts into the same range can also cause page splits in the index which will hold onto the latch while allocating a new page (this can take a while). Any read accesses to the same range as the inserts would also conflict on the latches. The solution in these cases is to distribute the inserts using a more appropriate cluster key
	See PAGELATCH_x

	PAGELATCH_KP
	
	Page latch keep
	See PAGELATCH_x

	PAGELATCH_NL
	
	Page latch null
	See PAGELATCH_x

	PAGELATCH_SH
	
	Page latch shared

Contention can be caused by issues other than IO or memory performance, for example, heavy concurrent inserts into the same index range can cause this type of contention. If a lot of inserts need to be placed on the same page they are serialized using the latch. A lot of inserts into the same range can also cause page splits in the index which will hold onto the latch while allocating a new page (this can take a while). Any read accesses to the same range as the inserts would also conflict on the latches. The solution in these cases is to distribute the inserts using a more appropriate
	See PAGELATCH_x

	PAGELATCH_UP
	
	Page latch Update is used only for allocation related pages, and contention on it is often a sign that more files are needed. With multiple files, allocations can be distributed across multiple files thus reducing demand on the per-file data structures stored on these pages. The contention is not IO performance, but rather internal allocation contention to access the pages – adding more spindles to a file or moving the file to a faster disk will not help, nor will adding more memory.
	See PAGELATCH_x

	PAGESUPP
	
	Waits for parallel page supplier. Possible disk bottleneck

Any of the following will reduce these waits:

1. Adding additional IO bandwidth,

2. Balancing IO across other drives

3. Reducing IO with proper indexing

4. Check for bad query plans

	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

Check IoStallMS for database

1. select * from ::fn_virtualfilestats(dbid,file#)

	PIPELINE_INDEX_STAT
	
	PIPELINE waittypes added to allow one user to perform multiple operations such as writes to log cache on behalf of himself as well as other users who are waiting for same operation. It does all log writes in single operation.
	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

Check IoStallMS for database

1. select * from ::fn_virtualfilestats(dbid,file#)

	PIPELINE_LOG
	
	PIPELINE waittypes added to allow one user to perform multiple operations such as writes to log cache on behalf of himself as well as other users who are waiting for same operation. Does in single operation.
	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

Check IoStallMS for database

1. select * from ::fn_virtualfilestats(dbid,file#)

	PIPELINE_VLM
	
	PIPELINE waittypes added to allow one user to perform multiple operations such as writes to log cache on behalf of himself as well as other users who are waiting for same operation. Does in single operation.
	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache perf counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

Check IoStallMS for database

1. select * from ::fn_virtualfilestats(dbid,file#)

	PSS_CHILD
	
	Waiting on Asynch thread
	

	RESOURCE_QUEUE
	
	Internal Use only
	Synchronization object

	RESOURCE_SEMAPHORE
	
	COMMON for DSS like workload & large queries such as hash joins; must wait for memory quota (grant) prior to execution.
	See SQL Memory Mgr perf counters

1. Memory Grants Pending

2. Memory Grants Outstanding

	SHUTDOWN
	
	Shutdown without specifying NOWAIT, waits for other users to logout before shutdown completes
	Monitory SQL Statistics: User Connections

To expedite shutdown you can:

1. SHUTDOWN WITH NOWAIT

2. Use SQL Kill command to terminate user connections.

	SLEEP
	
	Internal Use only
	

	TEMPOBJ
	
	Dropping a global temp object that is being used by others.
	

	TRAN_MARK_DT
	
	Transaction latch - destroy
	

	TRAN_MARK_EX
	
	Transaction latch - Exclusive
	

	TRAN_MARK_KP
	
	Transaction latch - Keep page
	

	TRAN_MARK_NL
	
	Transaction latch - Null
	

	TRAN_MARK_SH
	
	Transaction latch - Shared
	

	TRAN_MARK_UP
	
	Transaction latch - Update
	

	UMS_THREAD
	
	Batch waiting on a worker thread to free up (or batch waiting to get a worker thread to run it)
	If this is a high percentage, you can increase the number of worker threads from the default of 255. The maximum is 1024.

	WAITFOR
	Waitfor
	Check for waitfor delay in TSQL code
	Inspect TSQL code for “waitfor delay” statement

	WRITELOG
	Transaction Log
	Waiting for write requests to the transaction log to complete.

Identify disk bottlenecks, using PERF Counters, Profiler,

::fn_virtualfilestats and SHOWPLAN

Any of the following will reduce these waits:

1. Adding additional IO bandwidth,

2. Balancing IO across other drives

3. Moving / Isolating the transaction log on its own drive

	See Disk perf counters:

1. Disk sec/read

2. Disk sec/write

3. Disk queues

See SQL Buffer Cache counters:

1. Page Life Expectancy

2. Checkpoint pages/sec

3. Lazywrites/sec

Check IoStallMS for tranlog

1. select * from ::fn_virtualfilestats(dbid,file#)

	XACTLOCKINFO
	
	Transaction escalation, rollback
	

QUEUES (Perfmon Counters)

The Queues aspect of the Waits and Queues approach to performance analysis refers to PERFMON counters. PERFMON counters provide a view of system performance from a resource standpoint.

PERFMON Counters, correlation, possible conclusions & actions

	Resource

Component
	Perfmon Object
	Counters to Monitor
	Description
	Possible conclusions / actions

	Disk
	Physical Disk
	Current Queue Length
	Sustained high queues mean your IO subsystem is not keeping up.
	Confirm IO issues with disk sec/read & disk sec/write.

Waitstats correlation:

1. IO_COMPLETION

2. ASYNC_IO_COMPLETION

3. WRITELOG

4. LOGMGR

	
	
	Avg. Disk Queue Length

	Average of disk queues over time. If this number is consistently high, disk sec/read and disk sec/write will be high as well indicating IO bandwidth issues.
	Confirm IO issues with disk sec/read and disk sec/write.

Waitstats correlation:

1. IO_COMPLETION

2. ASYNC_IO_COMPLETION

3. WRITELOG

4. LOGMGR

	
	
	Disk Sec/Read

	Under normal circumstances, reads should take 4-8ms – confirm with hardware vendor for exact read time. Sustained queues will skew this number higher because disk sec/read factors in the effects of disk queues. High numbers mean your IO subsystem is not keeping up with requests

Check individual drive performance if there are multiple drives. If it is a broad problem affecting all drives, the IO subsystem is not keeping up. More drives could be beneficial. If there is ONE very hot drive, then look at disk activity such as location of paging file, database, transaction log, and other read/write activity.
	If disk sec/read > normal read time (ask vendor for normal read time) you can consider the following options:

1. Resolve IO bottleneck by adding more drives; spreading IO across new drives if possible e.g. move files such as database, transaction log, other application files that are being written to or read from.

2. Check for memory pressure – see memory component.

3. Check for proper indexing of SQL tables. Proper indexing can save IO. Check SQL query plans looking for scans and sorts, etc. Showplan identifies sorting steps.

4. Run SQL Profiler to identify TSQL statements doing scans. In Profiler, select the scans event class & scan stopped event. Go to the data column tab and add object Id. Run the trace. Save the profiler trace to a trace table, and then search for the scans event. Alternately, you can search for high duration, reads, and writes.

Waitstats correlation:

1. IO_COMPLETION

2. ASYNC_IO_COMPLETION

3. WRITELOG

4. LOGMGR

	
	
	Disk Sec/Write
	Under normal circumstances, reads should take 4-8ms - confirm with hardware vendor. Sustained queues will skew this disk sec/write higher because this counter factors in the effects of disk queues. High numbers mean your IO subsystem is not keeping up with requests. In some SAN environments, writes can be as low as 1-2ms.
	See disk sec/read.

High performance (significant insert, update, and delete activity) requires the transaction log to be on a separate drive from the database.

Waitstats correlation:

1. IO_COMPLETION

2. ASYNC_IO_COMPLETION

3. WRITELOG

4. LOGMGR

	Memory / Cache
	Memory
	Page Faults/sec
	This counter includes both hard faults (those that require disk access) and soft faults (where the faulted page is found elsewhere in physical memory.) Most processors can handle large numbers of soft faults without significant consequence. However, hard faults, which require disk access, can cause significant delays. See the disk component for more information.
	Check for memory pressure (see SQL Server buffer manager), low data page hit rates, & memory grants pending.

	
	
	Pages/sec
	Number of pages read from or written to disk to resolve hard page faults.

These are hard faults that require physical IO to fetch the page.
	Compare with Page Faults/sec.

Check for memory pressure (see SQL Server buffer manager), low data page hit rates, & memory grants pending.

	CPU
	Processor
	%User Time
	SQL Server runs in User mode. Privileged mode, is designed for operating system components and allows direct access to hardware and all memory.
	Make sure % user time > 70%. Check task manager (taskmgr.exe) to see how much CPU sqlserver.exe is getting. If user time < 70%, check on %Processor Time & % Privileged activity.

	
	
	% Privileged Time
	The operating system switches application threads to privileged mode to access operating system services
	Should be < 20%. Check task manager (taskmgr.exe) to see how much CPU sqlserver.exe is getting. If %privileged time > 20%, check on %Processor Time & % User Time.

	
	
	%Processor Time
	% of time CPU is executing over sample interval.
	Common uses of CPU resources:

1. Compilation and re-compilation use CPU resources. Plan re-use and parameterization minimizes CPU consumption due to compilation. For more details on compilation, recompilation, parameterization and plan re-use, see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
--Plan re-use is where usecounts are > 1

select dbid, objid, cacheobjtype, objtype, usecounts, sql

from master..syscacheobjects

order by dbid,objid, cacheobjtype,objtype,usecounts,sql

Correlate to PERFMON counters:

1. System: Processor Queue length

2. SQL Statistics: Compilations/sec

3. SQL Statistics: re-Compilations/sec

4. SQL Statistics: Requests/sec

If both of the following are true, you are cpu bound:

1. Proc time > 85% on average

2. Context switches (see system object) > 20K / sec

light weight pooling can provide a 15% boost. Lightweight pooling (also known as fiber mode) divides a thread into 10 fibers. Overhead per fiber is less than that of individual threads.

	
	
	%Idle Time
	% of time CPU is idle over sample interval
	

	
	
	Interrupts/sec
	Interrupts/sec is the average rate, in incidents per second, at which the processor received and serviced hardware interrupts.
	Correlate with other perfmon counters such as IO, Network.

	Thread
	Process
	Page Faults
	This counter includes both hard faults (those that require disk access) and soft faults (where the faulted page is found elsewhere in physical memory.) Most processors can handle large numbers of soft faults without significant consequence. However, hard faults, which require disk access, can cause significant delays. See the disk component for more information.
	Check for memory pressure (see SQL Server buffer manager), low data page hit rates, & memory grants pending, page life expectancy.

	System
	Usage
	Processor Queue Length
	
	Number of threads waiting to be scheduled for CPU time. Some common uses of CPU resources that may be avoidable:

1. Unnecessary compilation and recompilation. Parameterization and plan re-use would reduce CPU consumption. See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
2. memory pressure

3. lack of proper indexing

	
	
	Context Switches/sec
	
	

	SQL Server
	Access Method

	Forwarded Records/sec
	Number of records fetched through forwarded record pointers.

Tables with NO clustered index. If you start out with a short row, and update the row creating a wider row, the row may no longer fit on the data page. A pointer will be put in its place and the row will be forwarded to another page.
	Look at code to determine where the short row is inserted followed by an update.

Can be avoided by:

1. Using Default values (so that an update will not result in a longer row that is the root cause of forwarded records).

2. Using Char instead of varchar (fixes length so that an update will not result in a longer row

	
	
	Full Scan/sec
	Entire table or index is scanned. Scans can cause excessive IO if an index would be beneficial.
	SQL Profiler can be used to identify which TSQL statements do scan. Select the scans event class & events scan:started and scan:completed. Include the object Id data column. Save the profiler trace to a trace table, and then search for the scans event.

The scan:completed event will provide associated IO so you can also search for high reads, writes, and duration.

	
	
	Index Searches/sec
	Number of index searches. Index searches are used to start range scans, single index record fetches, and to reposition within an index.
	Compare to Full Scan/sec. You want to see high values for index searches.

	
	
	Page Splits/sec
	Number of page splits occurring as the result of index pages overflowing. Normally associated with leaf pages of clustered indexes and non-clustered indexes.
	Page splits are extra IO overhead that results from random inserts.

When there is no room on a data page, and the row must be inserted on the page (due to index order), SQL will split the page moving half the rows to a new page, and then insert the new row.

Correlate to Disk: page sec/write. If this is very high, you may reorg the index(es) on the table(s) causing the page splits, to reduce page splits temporarily. Fillfactor will leave a certain amount of space available for inserts.

	
	Memory Mgr
	Memory Grants Pending
	Memory resources are required for each user request. If sufficient memory is not available, the user will wait until there is enough memory for the query to run.
	Compare with Memory grants outstanding. If grants pending increases, you can do the following:

1. add more memory to SQL Server

2. add more physical memory to the box.

3. check for memory pressure – see & correct indexing if you experience “out of memory” conditions.

Correlate to Waittype

1. RESOURCE_SEMAPHORE

	
	Buffer Manager
	Buffer cache hit ratio
	Percentage of time the pages requested are already in cache
	Check for memory pressure. See Checkpoint pages/sec, Lazywrites/sec and Page life expectancy.

	
	
	Checkpoint pages/sec
	Pages written to disk during the checkpoint process, freeing up SQL cache
	Memory pressure is indicated if this counter is high along with high lazy writes/sec and low page life expectancy (<300 seconds)

	
	
	Lazy writes/sec
	Pages written to disk by the lazywriter, freeing up SQL cache
	Memory pressure is indicated if this counter is high along with high lazy writes/sec and low page life expectancy (<300 seconds)

	
	
	Page life expectancy
	Time in seconds the data pages, on average, stay in SQL cache. Low page life < 300 may indicate (1) SQL cache is cold, (2) memory problems or (3) missing indexes. Correlate to Lazywrites/sec and Checkpoint pages/sec
	Memory pressure is indicated if this counter is low (<300) along with high lazy writes/sec and checkpoint pages/sec.

Check for missing indexes and bad query plans (scans in profiler)

Check for high page faults/sec.

	
	
	Readahead pages/sec
	If memory shortages, cold cache, or low hit rates, SQL may use worker threads to readahead (bring in pages ahead of time) to raise hit rates. By itself readahead is not a problem unless users are flushing each other’s pages consistently.
	Correlate to counters for SQL buffer mgr: buffer cache hit ratio, page life expectancy, lazywrites, and checkpoint pages for memory pressure.

Check for proper indexing and bad query plans (scans in profiler)

	
	Cache Manager
	Cache Hit Ratio
	Percentage of time the procedure plan pages are already in cache e.g. procedure cache hits. I.e. how often a compiled procedure is found in the procedure cache (thus avoiding the need to recompile).
	Check for memory pressure. See Checkpoint pages/sec, Lazywrites/sec and Page life expectancy.

See SQL Profiler: Stored Procedure: CacheHit, CacheMiss, and CacheInsert to see what stored procedure query plans are already in cache (Hit), vs. those not in cache (Miss,Insert)

Check for appropriate plan re-use in the usecounts column of master..syscacheobjects. It is often desirable for query plans to be re-used for similar SQL although not always.

Select cacheobjtype, objtype, dbid, sql, usecounts

From master..syscacheobjects

See SQL Statistics: Compilations/sec for discussion of plan reuse.

If there is memory pressure, plans will be discarded to make room for other data and/or procedure plans.

	
	Databases
	Log Flush Wait Time
	Waiting for transaction log writes (ms)
	See disk perf counters

Check transaction log file ::fn_virtualfilestats(dbid, file#) for IOStallMS (waits in ms)

	
	
	Log Flush Waits/sec
	Tranlog writes per second
	See disk perf counters, ::fn_virtualfilestats for IOStallMS.

	
	
	Log Growths
	Windows will automatically grow transaction log to accommodate insert, update, and delete activity.
	In general, growths of the transaction log will temporarily freeze writes to the transaction log while Windows grows the transaction log file. Check to see that the growth increment is large enough. If not, performance will suffer as log growths will occur more often.

	
	
	Transactions /sec
	SQL Server transactions per second
	

	
	General Statistics
	Logins/sec
	Number of logins per second
	User connections

	
	
	Logout/sec
	Number of logouts per second
	

	
	
	User connections
	Number of user connections
	

	
	Latches
	Average Latch Wait Time(ms)
	Latches are short term light weight synchronization object. Latches are not held for the duration of a transaction. Typical latching operations during row transfers to memory, controlling modifications to row offset table, etc.
	If high, check PERFMON DISK and MEMORY objects for

1. IO bottlenecks

2. memory pressure

Normally reduced with more memory and/or IO capacity

	
	
	Latch Waits/sec
	See above
	

	
	
	Total Latch Wait Time(ms)
	Short term light weight synchronization object. Latches are not held for the duration of a transaction. Typical latching operations during row transfers to memory, controlling modifications to row offset table, etc.
	If high, check PERFMON DISK and MEMORY objects for

1. IO bottlenecks

2. memory pressure

Normally reduced with more memory and/or IO capacity

	
	Locks
	Average Wait Time(ms)
	Transactions should be as short as possible to limit the blocking of other users.
	Hint: check for memory pressure, which causes more physical IO, thus prolonging the duration of transactions and locks.

	
	
	Lock Wait Time(ms)
	Transactions should be as short as possible to limit the blocking of other users.
	Hint: check for memory pressure, which causes more physical IO, thus prolonging the duration of transactions and locks

	
	
	Lock Waits/sec
	Transactions should be as short as possible to limit the blocking of other users.
	Hint: check for memory pressure, which causes more physical IO, thus prolonging the duration of transactions and locks

	
	SQL

Statistics
	Compilations/sec
	Includes initial compile and subsequent re-compiles. Compilation and re-compilation are CPU intensive operations.

Unnecessary compilation can sometimes be avoided with query plan re-use. Query plan re-use can be seen in the usecounts column of syscacheobjects as follows

Select cacheobjtype, objtype, dbid, sql, usecounts

From master..syscacheobjects

Parameterization is important for plan re-use. In addition, some types of re-compilation can be avoided. See the SQL Server 2000 recompilation paper for more info: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp
To get initial compilations ONLY, you must subtract recompilations/sec from compilations/sec.

Compare to batch requests/sec to see extent of compilation.

	
	
	Recompilations/sec

	Only contains re-compiles. SQL Profiler can provide information on what procs are recompiling, what statement, and the reason for recompilation. In Profiler, select the stored procedure event class & SP:recompilation event, and include the data column eventsubclass. Review the trace searching for eventsubclass values 1 through 6. The statements preceding caused the recompilation. For more details on recompilation, see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp

	
	
	Batch Requests/sec

	Total batch requests should be compared with compilations/sec

	
	
	Auto-Param Attempts/sec

	Auto-param attempts should be compared to failed auto-params/sec. Proper parameterization is important for plan re-use. In some cases, Sp_executeSQL could be used with adhoc SQL. For more details on recompilation, see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp

	
	
	Failed Auto-Params/sec
	Auto-param attempts should be compared to failed auto-params/sec. Proper parameterization is important for plan re-use. In some cases, Sp_executeSQL could be used with adhoc SQL. For more details on recompilation, see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/sql_queryrecompilation.asp

