
[image: image23.png]
The Database Administrator’s Guide to the SQL Server Database Engine .NET Common Language Runtime Environment
Author: Kimberly L. Tripp, Founder, SQLskills.com

Summary

SQL Server 2005 provides the database application programmer with a rich new development platform by hosting the .NET Framework Common Language Runtime environment (CLR). With new capabilities come new roles and responsibilities for the Database Administrator (DBA). This whitepaper helps the DBA determine appropriate use of this new feature and guidance on when other alternatives may provide better performance, flexibility or capabilities. As well as offering guidance on suitable uses for the Database Engine .NET Framework Programming API this whitepaper also suggests code, change and release management processes that should be tailored to each DBA’s individual circumstances to ensure a professional and safe deployment.

About this paper

The features and plans described in this document are the current direction for the next version of the SQL Server. They are not specifications for this product and are subject to change. There are no guarantees, implied or otherwise, that these features will be included in the final product release.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

For some features, this document assumes that the reader is familiar with SQL Server 2000 features and services. For background information about SQL Server features and services, see the official product Web site at http://www.microsoft.com/sql/ or the SQL Server 2000 Resource Kit that is available from Microsoft Press.

THIS IS NOT A PRODUCT SPECIFICATION.
© 2005 Microsoft Corporation. All rights reserved.

Table of Contents

2The Database Administrator’s Guide to the SQL Server Database Engine .NET Common Language Runtime Environment

iTable of Contents

1Finding the Right Tool for the Job

2Introduction to .NET Framework Programming in the Database Engine

3Important Notes on Implementation

3High Performance Implementation

3Secure By Design, Default & Deployment

5Step1: Open the Surface Area Configuration Tool

5Step2: Enable the Database Engine .NET Framework Programming API

7To enable the API with Transact-SQL:

8Choosing the Right Tool for the Job

13The Programming Paradigm

15Cataloging Objects

15Assemblies

16Stored Procedures

16Triggers

16User-defined Functions

16Scalar Functions

17Table Valued Functions

17User-defined Aggregations

17User-defined Types

19Maintaining Security

20Source Code Management

22Release Management

24Performance Monitoring

27Debugging code

29Warning signs

31Looking beyond SQL Server 2005

32Summary

34Additional SQL Server 2005 Resources

34Free Resources on Microsoft.com, MSDN and TechNet

34Miscellaneous Resources

Finding the Right Tool for the Job
This whitepaper sets out to provide information to the DBA that should help them ensure successful, risk free and hence, stress-free adoption of .NET Framework programming in the Database Engine. The Database Administrator is the audience for this paper, for a more developer focused look at .NET Framework programming for the SQL Server 2005 Database Engine, see the following whitepaper on MSDN: Using CLR Integration in SQL Server 2005.
SQL Server 2005 provides a broad set of programming interfaces that enable developers to build robust database applications with greater ease, performance and reliability than ever before. Along with this breadth of programming options comes the need to consider which set of tools is appropriate for each task. Although many tasks can be accomplished multiple ways, each has pros and cons – so finding the best tool for the job is critical for an application to perform and scale with load and growing business usage. Some of the questions the DBA needs to ask are:

· Should the system handle this data as XML or should it be shredded and stored relationally?

· Should this process – and all of its complex pieces – be handled synchronously or asynchronously?

· Should this business logic, this calculation or this added security option be handled in the client application, the middle-tier or the back-end database?

· Should data analysis be handled in the relational database or through the Business Intelligence engine?

· Should the data transformation occur with the Integration Services ETL engine or in the database using transforms built with Transact-SQL?

· Should complex business logic – traditionally running on middle-tier servers – remain in the middle-tier or migrate to the SQL Server platform?

· What mix of clients and servers are running in the infrastructure – is there a need to support Windows clients, Unix clients or both?
In most database development projects the role of technology selection and of structural design of components that interact with the database falls on the Database Administrator (DBA) – the person with final responsibility for managing and recovering that business data. Most DBAs adopt conservative attitudes to new technology. This is a natural instinct because along with the benefits offered by new functionality, new technology can introduce new risks to stability and integrity. The professional DBA usually manages the risk/benefit by ensuring that there is full testing and that they understand the new technology, taking the time to identify where it adds the most value and, perhaps more importantly, where it should not be used. As a result of this natural conservatism the DBA may ask “How do I turn that feature off until I understand it?” The good news is that unlike previous releases of SQL Server, in this release many new features are “off by default”.

Instead of leaving all features off permanently a prudent DBA will tend to learn enough about the technology to determine where its use is appropriate and where its application makes the most sense. There is no need to understand every line of code – in every language the developer might use – but there needs to be enough confidence to be able to provide great operational support, maintenance and troubleshooting. Across many of these new features, the key to proper usage is: understanding, impact isolation and strong control.

Introduction to .NET Framework Programming in the Database Engine
The SQL Server 2000 database programmer has the following options when coding against SQL Server database tables and views:

· Use Transact-SQL to write code that runs within the database. Code can be written as stored procedures, user-defined functions and/or triggers (that can be regarded as stored procedures that are invoked on data change).

· Use Visual C++ to write code (an ‘Extended Stored Procedure’) that runs within the database. Code that is written as an extended stored procedure appears to users as a stored procedure and is executed in the same way. Parameters can be passed to extended stored procedures, and they can participate in transactions and return both results and return status.

· Use the sp_OA* (Object Access) system stored procedures to load and interact with COM objects

· Use other languages and middleware such as ADO and ADO.NET to write code that executes outside of the database and that passes in queries or invokes stored procedures and functions to access data.

Each of the options above has issues when the solution demands that data be integrated with functionality supplied by external libraries (such as those provided with the .NET Framework); or that nontrivial mathematical operations be applied to the data; or if the requirement is for something more complex such as a custom aggregation of data or a true user-defined data type.

Each of the four options has limitations:

· Transact-SQL is excellent for set-based operations such as comparisons between tables but, due to the interpreted nature of the language it can struggle to deliver good performance for computationally heavy tasks. Another limitation is that unlike modern programming languages Transact-SQL does not have support for private/public data encapsulation so it is harder to implement clean interfaces between modules. Finally, SQL Server 2005 introduces improved error handling within Transact-SQL however it is still susceptible to “un-trappable” errors caused by missing objects or bad syntax that is easily handled by .NET Framework languages.

· Extended Stored procedures are by their nature written in unmanaged code and execute within the context of the SQL Server process. A greater level of programming competency is required to create code that does not inadvertently leak memory or generate unhandled exceptions that can crash the entire SQL Server process. Extended stored procedures cannot provide in-process access to the .NET Framework libraries without placing the server in an unsupported state. For more information, see this knowledge base article: Using extended stored procedures or SP_OA stored procedures to load the CLR in SQL Server is not supported.

· The sp_OA* system stored procedures place limitations on the COM object, requiring that its interface be implemented in a compatible way, and have further restrictions on the amount of data that can be passed to the COM object in a single call. They can encourage inappropriate use of components that are not designed to be used in high-throughput scenarios, or that do not support multiple invocations by a single process; in the worst case the component can attempt to display an error message window or other dialog on the SQL Server.

· External code can cause performance problems because data must leave the SQL Server process space and flow to the calling application; this data marshalling can be expensive for large volumes of data.

· None of the current options can be used to create first-class custom aggregate functions or custom data types, where first-class means running within the database as if it were a SQL Server primitive function or data type.

With these limitations in mind. SQL Server 2005 integrates the .NET Framework Common Language Runtime (the CLR - the execution environment for managed code) and thus enables database developers to place managed application code inside the SQL Server which is safe, secure, scalable and feature rich. Code can be written as:

· User-defined functions (scalar or table valued)

· Stored procedures

· Triggers

· User-defined aggregates

· User-defined types

The mapping of user-defined functions, stored procedures and triggers to objects written in managed code is fairly intuitive – the CLR programs are accessed and execute the same way as their Transact-SQL equivalents. However, user-defined aggregates and types are less intuitive and extend the options of the database programmer in new ways:

· User-defined Aggregates allow the programmer to build custom aggregate functions (used in conjunction with the GROUP BY clause). This enables complex statistical and data analysis in the database engine.

· User-defined Types provide the programmer with the ability to define new types with custom behaviors, combined with the power of the .NET Frameworks and third party libraries, this new capability will allow strongly-typed objects to be created instead of forcing a relational representation.

Important Notes on Implementation
High Performance Implementation
SQL Server 2005 delivers high-performance access to managed code that runs inside the database server process. Unlike other database technologies that have provided a degree of integration with the .NET Framework, SQL Server 2005 hosts the runtime environment (CLR) in the database engine’s process space; this delivers higher performance when transitioning between the SQL Server query execution environment and the CLR. The integration is designed to avoid conflicting memory and CPU demands between database queries and programs. Additionally, the SQL Server and .NET Framework software engineers worked to make the CLR safe and performant within the SQL Server process:

· The CLR requests memory from SQL Server, not directly from Windows.

· CPU-intensive CLR memory garbage collection is controlled by SQL Server.

· An “in-process” version of the managed SQL Server client passes SQL requests straight into the SQL Server query processor (avoiding costly network interaction).

· CLR Application Domains are created and managed by SQL Server.

All of this engineering is designed to ensure that a runaway CLR program cannot compromise the stability of the SQL Server.

Secure By Design, Default & Deployment
Microsoft is on a continuous journey to deliver secure products to its customers, the Trustworthy Computing Initiative lead to SQL Server 2000 SP3, designed to be the most secure release of SQL Server 2000. This initiative continues to impact SQL Server as Microsoft moves further in this release by enhancing the “off by default” security of its products;

The Database Engine .NET Framework Programming API is “off by default” and the DBA must make the deliberate decision to activate the feature.
SQL Server 2005 introduces the “Surface Area Configuration” tool that empowers the DBA to control which features are enabled. This change in philosophy ensures that potentially unused features are not enabled and left in an unprotected state.

Step1: Open the Surface Area Configuration Tool
[image: image1.jpg]The shortcut to the tool is installed in the Start/All Program menu within the SQL Server 2005 program group in the Configuration Tools sub-group.

Select the SQL Server Surface Area Configuration option and then when the dialog presents, select:

“Surface Area Configuration for Features”

This will open the dialog below that enables the selection of a SQL Server instance and then the selection of each locked down option.

Step2: Enable the Database Engine .NET Framework Programming API
Selecting Surface Area Configuration for Features opens the dialog below. Two views of the options are available, the default (by instance) enables control by SQL Server instance; the second enables control across components such as “Database Engine” and “Reporting Services”.

Before enabling features that increase the surface area of the SQL Server it is recommended that the DBA ensure that their systems are:

· At the latest service pack and critical hotfix level (obtained from Microsoft Update)

· Configured according to their recommendations for secure systems (these may be informed by Microsoft and other third party vendor advice on server and infrastructure configuration)

[image: image14.png]The Database Engine .NET Framework Programming API is part of the Database Engine feature set, and is referred to as “CLR Integration” in the user interface.

The user interface provides an easy way to view and set SQL Server 2005 instance level permissions.

The SQL Server 2005 instance level features can also be controlled programmatically by:

· Transact-SQL sp_configure command

· Managed code using the Server Management Objects (SMO) Server object Configuration class.

To enable the API with Transact-SQL:
	-- Enable & Check the Database Engine .NET Framework Programming api
sp_configure N'clr enabled', 1
go
reconfigure
go
SELECT sc.*
FROM sys.configurations AS sc
WHERE sc.[name] = N'clr enabled'

Choosing the Right Tool for the Job
Decisions around tool and API selection depend on many other factors such as your internal staff’s skills; the recommendations of any third party software vendors that deliver the systems that run your company; the requirement to deliver a brand-new system; and many others.
[image: image15.jpg]
The illustration depicts both the dilemma and the choice that most DBAs will face. Some decisions are simple, while other decisions are extremely complex, especially where there are many ways to implement the functionality and no absolute direction between the technology options.

In these cases, prototyping becomes more important – a quick implementation using two or more competing options can make the choice much clearer.

As previously stated, the professional DBA is conservative – new technologies are not implemented lightly; they must first be understood and then carefully tested before they become integrated into production environments, to act otherwise would risk destabilizing the database and lead to user distrust of the integrity of the systems the database hosts (as well as threatening the job safety of the DBA). A further assumption is that Developers are more willing to take risks and to adopt new tools that increase their productivity and extend the functional domain of the solutions they can offer their users. There is no doubt that the Database Engine .NET Framework programming model is powerful and that many developers will relish the ability to write in-database code in first-class programming languages.

So where do these two conflicting character types meet in order to ensure that their systems remain stable and that new productivity and functionality gains are realized? The answer is in finding balance, in understanding the opportunities and more importantly defining choices rationally, based on strict criteria for technology selection. This section suggests some guidelines that might be followed to achieve this middle-ground.

The first set of points provides guidance on where it might be a mistake to use the new functionality:

· Heavy relational data access
Don’t move away from Transact-SQL for simple query execution. Transact-SQL set-based access will be faster than paying the transition cost for moving data in/out of the .NET Framework, especially if the set-based query is replaced by cursor-like behavior in the program (refer to the section “Warning Signs” for more on this potentially hidden cost). Note that the opposite applies if complex computations are taking place within the query, in this case moving the logic into a .NET Framework program where the computation will be fully compiled can improve performance. The transition overhead between the Transact-SQL and .NET Framework execution environments is more noticeable for simple computations and basic relational data access; in this case it is likely that Transact-SQL will outperform the CLR.
· Long running, external calls
While it is tempting to use the new functionality to further integrate existing business systems, it is important to take the time to ensure that the end-user experience does not get negatively impacted by calls to external APIs and external systems. These impacts can be especially visible in a user-defined function that might get called for every row of a table within a query. An external call that costs one second per-row suddenly becomes unusable in an online system when applied to a modest 10,000 row table.

· Unnecessary use of user-defined types
When the object’s data can be easily mapped to one or more relational data types, you should stay (or go) relational. Be aware that user-defined types have:

· An 8K size limitation (they must fit on a single SQL Server data page)

· All data within the UDT is read and then rewritten if updated.

The same size restriction applies to user defined aggregates so care should be taken especially when concatenating large string objects.

· User-defined aggregates and online reporting
User-defined aggregates cannot be used in combination with the SQL Server Indexed Views, so it is not possible to automatically pre-aggregate data for online report performance. If stale data is acceptable then a separately created and maintained table that periodically caches the aggregated results could be used in place of an indexed view.

· Compatibility with prior versions of SQL Server
If your application must support previous versions of SQL Server then you cannot use this functionality.

· Appropriate use of the technology
The Database Engine .NET Framework programming API introduces a huge range of new possibilities for the database programmer, however you should avoid racing into use of this new technology unless you can state a clear rationale for its use.

The above points might seem like a strong case for never deploying this technology; however there are many compelling scenarios where it can provide considerable benefits:

· Leveraging the power of the .NET Framework and the Visual Studio programming environment
This is where the most gains can be made in terms of developer productivity and new possibilities.

With the 2005 generation of SQL Server and Visual Studio, the Integrated Development Environment and the .NET Frameworks are now in their third release and second generation – this has allowed a huge amount of developer feedback and means that the user-interface enables rapid application development and the class libraries provide a rich set of objects and methods that the developer can employ to avoid having to develop their own code to do many generic tasks.

The first-class programming languages of the .NET Framework (C#, Managed C++ and Visual Basic.NET) offer the programmer more control over error handling and provide for better diagnostics in terms of call stacks and other debug information.

Access to most of the local functionality is possible without granting high levels of privilege, meaning that rich XML, string, regular expression, localization and data manipulation functionality is readily available without compromising data security.

And because the code is compiled and then converted to machine code at invocation it is possible to code business logic that executes an order of magnitude faster than Transact-SQL.

Examples where this might be done are:
- Connecting to a remote web service to access data in tabular format (realizing the integration promises of web services at the database level)
- Calling a third party vendor’s control to add an order to an ERP system based upon a change inside the database
- Using a set of code libraries that offer datatypes & functions specific to your industry segment, be it research, financial, manufacturing, or sales.

· Replacing Extended Stored Procedures (XP’s)
Prior to the arrival of the Database Engine .NET Framework programming API, the only way to provide access to the external world was through extended stored procedures and the sp_OA* stored procedures, however, as documented earlier, these methods present a high risk to database stability even when used by experienced developers.

It is recommended that the DBA who has systems with extended stored procedures providing extended business logic, or who is using object model manipulation via the sp_OA* stored procedures consider rapid adoption of this new technology, because the SQL CLR is safer.

Using the SQLCLR has these advantages:

· There is no possibility of managed user-code generated access violations making SQL Server crash.

· There is no possibility of managed user-code memory leaks making SQL Server slow down and hang.

· There is better performance and scalability through SQL Server’s memory manager controlling system resources.

· There are no security issues as security is fully integrated with both the SQL Server and .NET Framework environments.

Note that these advantages may not apply to code that is running in the unsafe trust bucket as calls out to unmanaged code; use of COM automation; or calls to “process-threatening” libraries (such as dialog generating code, thread creation code, or code that interferes with the process context) may still have an impact on the SQL Server instance by causing access violations or by leaking memory.

Examples of extended stored procedures that could be replaced:– pretty much all of them (especially considering that Managed C++ is available as a coding option)

· Data validation on Updates
Enforcing a common set of business rules when changing data across multiple clients is a perennial problem for some systems who can have complex middle-tier validation logic. The new API allows this logic to move to triggers in the database tier to ensure that all updates are consistent.

An example might require that data is entered in a specific order, some of it in systems and technologies that are not normally directly accessible to Transact-SQL triggers – the trigger can check that a new customer is first entered and accredited into a remote system on an IBM mainframe that manages credit risk across all of the company’s customers.

· Network traffic reduction
Some algorithms require all (or a large percentage) of the data to produce results, moving large volumes of data between servers can be very expensive in terms of CPU so placing this algorithm in the database can avoid the data marshalling CPU and network cost and this will likely result (for well architected apps) in better 3-tier performance.

Examples can be seen in many statistical calculations that require all the data to produce moving averages of data, or where a dataset from SQL is being joined onto data not held in a relational database (and not accessible to a linked server) where the volume of data in SQL is much greater than that of the remote system.

· Writing general purpose functions
A general purpose function has the following characteristics:

· Data is passed in as function arguments

· There is little or no additional data access within the function

· Complex computation is applied through cursor-like code to the data within a loop that processes a row at a time

· This is an area where the benefits of the compiled nature of the CLR execution environment can greatly outweigh the costs of transitioning data between the environments. In performance tests the SQL Server team has seen benefits at as low as three integer operations per call.

Examples might include closing balance calculations that “number crunch” through the day’s transactions looking for fraud or any unusual data patterns.

· Implementing scalar user-defined types
Although most data can be mapped to the relational model, there are many examples where a user-defined type makes considerable sense:

· The type wraps external behavior in order to present it within SQL Server (an example might be a date type that implements UTC functionality)

· The type uses encapsulation to protect its contents, and where the data is usually read and updated together (an example might be an implementation of a spatial data type, or a complex number).

· Using the power of custom user-defined aggregations
Many industries “crunch data” into custom groupings based on all/subsets of input data where the native aggregation operators such as SUM, AVG, MIN, etc. are not sufficient. Examples might be computing a Fourier transform or an actuarial predictive calculation. The implementation of user-defined aggregates permits fan out/fan in (parallel execution) across multiple threads and thus should scale well across multiple processors.

· High performance table-valued, user-defined functions
Saving pre-instantiation by supporting partial results from “streaming” table-valued, user-defined functions, many algorithms do not require a complete list of all items from an external data source, examples being “get the latest stock price”, “get the latest event from the event log” and “get the first item in the queue”. The user-defined function infrastructure supports “streaming” of data – data is requested on demand rather than at one single time, thus avoiding having to read large results sets into memory.

This is a capability that exceeds that of the Transact-SQL table-valued, user-defined function, which must instantiate all of its data when called, and in situations where partial requests are common could considerably outperform the traditional user-defined function.

The above lists of good and bad uses for this technology should serve as a starting point to the development and systems management communities to understand where this new functionality fits in their toolkit.

The Programming Paradigm
Developers author code within Visual Studio – this is the optimum tool for productive programming using the Database Engine .NET Framework programming API. It is possible to use other tools to create programs, such as the Express toolset or even Windows Notepad but these lack the Database Engine wizards, integration with MSDN and Visual Source Safe and other team-development tools. Additionally, Visual Studio offers a multiplicity of deployment, test and debugging tools that a proficient developer can exploit to deliver high-end, professional applications rapidly.
[image: image16.wmf]The paradigm is simple – once the developer has completed their solution they use the .NET Framework compilers to build an assembly (a .dll file stored on the target file server) and then either manually or automatically deploy the binary assembly into the database.

Once the assembly has been loaded into the database it is now independent of the original file (the .dll). This means that the database can be backed up, moved, and even restored without worrying about external object dependencies; they are all pre-loaded into the database.

Note that the original source code must still be maintained, and ideally all changes tracked. This aspect of system management is covered below.

The following recommendations are made in order to maximize the productivity of developers:

· Developers should be provided with a full set of professional tools:

· Visual Studio 2005 Team System and MSDN

· SQL Server 2005 Express for “Occasional” Database Engine .NET Framework API uses and some limited forms of testing and development.

· SQL Server 2005 Developer Edition for “Regular” Database Engine .NET Framework API users

· Visual SourceSafe or equivalent source control management system for team access to source code and release management.

· Developers need access to production-like data

· A scaled down version of the production database – with a reasonable representation of relative table sizes and with sensitive customer data obfuscated – should be accessible in order to test and prototype accurately. An important note is that other tools, like SQL Server 2005 Integration Services, can be used to create a rich developer version of your production database with obscured credit card, name, address, and social security numbers.

· Access to test web services for testing integration with other systems

There are some restrictions of the .NET Framework infrastructure that predicate “a database on every (developer’s) desktop” – when using Visual Studio debuggers to trace through the execution of new code the CLR engine single threads. Debugging should never take place against a production system except as a last resort.

The Developer Edition of SQL Server 2005 is recommended for professional developers as it provides them with the SQL Server Management Studio which is fully integrated with the source control API; this edition also includes the SQL Server Profiler for tracing the execution of SQL Server commands. There are a wealth of other tools that overlap the DBA and Developer roles that will make developers more productive when creating and scripting database objects – for example SQLCMD for scripting and automation. For more information regarding tools, see the resources and links outlined at the end of this whitepaper.

Cataloging Objects
One of the main duties of the diligent DBA is tracking the objects that make up a service – which tables are in which databases, what stored procedures and functions are required, what scripts must run daily, weekly, monthly and so on. To aid in tracking all of these objects, there are a number of tools from Microsoft and other software vendors (e.g. Microsoft Visio for the data model, Microsoft SQL Server Management Studio for the database and many others).

The integration of SQL Server 2005 with the “outside world” introduces many new objects that both supplement and extend the relational system catalog of previous releases. This section documents how to use the changed catalog to obtain an accurate list of these new database objects, as well as the additional metadata for each new object type within a database.

Assemblies
	-- SYS.ASSEMBLIES
-- Name, Assembly ID, security and “is_visible” flag

SELECT * FROM sys.assemblies

-- SYS.ASSEMBLY_FILES

-- Assembly ID, name of each file & assembly contents

SELECT * FROM sys.assembly_files

-- SYS.ASSEMBLY_MODULES

-- Sql ObjectID, Assembly ID, name & assembly method

SELECT * FROM sys.assembly_modules

-- SYS.ASSEMBLY_REFERENCES

-- Links between assemblies on Assembly ID

SELECT * FROM sys.assembly_references

-- SYS.MODULE_ASSEMBLY_USAGES

-- Partial duplicate of SYS.ASSEMBLY_MODULES

-- Links SQL Object ID to an Assembly ID

SELECT * FROM sys.module_assembly_usages

The views above are defined as system catalog views. These catalog views provide information about the “containers” of these new assemblies. These assemblies (or .dll files) are the result of .NET Framework program compilation and “registration” in the database.

An interesting note: the sys.assemblies “is visible” flag can be used to hide an assembly from having its public methods registered. This can be used to conceal “helper” assemblies such as the .XmlSerializers generated for assemblies that use web services to access data.

In the sys.assembly_modules view a null assembly method indicates an assembly that will be used as a user-defined aggregate.

Note that there are also two system stored procedures that provide access to these tables:

	EXEC sys.sp_assemblies_rowset N'<AssemblyName>'
EXEC sys.sp_assembly_dependencies_rowset <AssemblyID>

Stored Procedures
	-- Read CLR Stored Procedure Metadata
SELECT schema_name(sp.schema_id) + '.' + sp.[name] AS [Name]

, sp.create_date

, sp.modify_date

, sa.permission_set_desc AS [Access]

, sp.is_auto_executed
FROM sys.procedures AS sp

INNER JOIN sys.module_assembly_usages AS sau

ON sp.object_id = sau.object_id

INNER JOIN sys.assemblies AS sa

ON sau.assembly_id = sa.assembly_id
WHERE sp.type_desc = N'CLR_STORED_PROCEDURE'

 Triggers
	-- CLR Trigger Metadata
-- Note that Trigger parent object is always in the same schema
SELECT schema_name(so.schema_id) + '.' + tr.[name] AS [Name]

, schema_name(so.schema_id) + '.' + object_name(tr.parent_id) AS

[Parent]

, te.type_desc AS [Fired On]

, te.is_first

, te.is_last

, tr.create_date

, tr.modify_date

, sa.permission_set_desc AS [Access]

, tr.is_disabled

, tr.is_not_for_replication

, tr.is_instead_of_trigger
FROM sys.triggers AS tr

INNER JOIN sys.objects AS so

ON tr.[object_id] = so.[object_id]

INNER JOIN sys.trigger_events AS te

ON tr.[object_id] = te.[object_id]

INNER JOIN sys.module_assembly_usages AS mau

ON tr.object_id = mau.object_id

INNER JOIN sys.assemblies AS sa

ON mau.assembly_id = sa.assembly_id
WHERE tr.type_desc = N'CLR_TRIGGER'

User-defined Functions
Scalar Functions

	-- List CLR Scalar Functions
SELECT schema_name(so.schema_id) + N'.' + so.[name] AS [Name]

, so.create_date, so.modify_date

, sa.permission_set_desc AS [Access]
FROM sys.objects AS so

INNER JOIN sys.module_assembly_usages AS sau

ON so.object_id = sau.object_id

INNER JOIN sys.assemblies AS sa

ON sau.assembly_id = sa.assembly_id
WHERE so.type_desc = N'CLR_SCALAR_FUNCTION'

Table Valued Functions
	-- List CLR Table Functions
SELECT schema_name(so.schema_id) + N'.' + so.[name] AS [Name]

, so.create_date, so.modify_date

, sa.permission_set_desc AS [Access]
FROM sys.objects AS so

INNER JOIN sys.module_assembly_usages AS sau

ON so.object_id = sau.object_id

INNER JOIN sys.assemblies AS sa

ON sau.assembly_id = sa.assembly_id
WHERE so.type_desc = N'CLR_TABLE_VALUED_FUNCTION'

User-defined Aggregations
	-- List CLR Aggregate Functions
SELECT schema_name(so.schema_id) + N'.' + so.[name] AS [Name]

, so.create_date

, so.modify_date

, sa.permission_set_desc AS [Access]
FROM sys.objects AS so

INNER JOIN sys.module_assembly_usages AS mau

ON so.object_id = mau.object_id

INNER JOIN sys.assemblies AS sa

ON mau.assembly_id = sa.assembly_id
WHERE so.type_desc = N'AGGREGATE_FUNCTION'

User-defined Types
	-- User Defined Type Metadata
-- Includes base assembly information
SELECT st.[name] AS [Type Name]

, st.max_length

, st.[precision]

, st.scale

, st.collation_name

, st.is_nullable

, sa.create_date

, sa.[name] AS [Assembly Name]

, sa.permission_set_desc AS [Access]
FROM sys.types AS st

INNER JOIN sys.type_assembly_usages AS tau

ON st.user_type_id = tau.user_type_id

INNER JOIN sys.assemblies AS sa

ON tau.assembly_id = sa.assembly_id

Maintaining Security
One of the potential drawbacks of integrating environments with distinct security models is that without careful design the aims of one can be compromised by the other – for example an extended stored procedure must connect back into the SQL Server to access data, and must enlist the active transaction to protect the integrity of data it changes. Failure to do either can result in data corruption and elevation of privilege security holes.

The architects of the Database Engine .NET Framework Programming API have been careful to ensure that both security models are respected. The SQL Server model using the GRANT command to provide specific object access is respected as is the .NET Framework’s Code Access Security which controls the interaction between modules of higher/lower privilege.

A non-administrative user must be granted execute privileges on routines before they can be used.

To simplify the code access security model (the permissions that define what the assembly can do) permissions are grouped into three sets:

SAFE
The assembly’s methods can do no more than an equivalent Transact-SQL stored procedure or function. The code runs under the caller’s credentials.

EXTERNAL ACCESS
The assembly’s method can perform file and network input/output. External code runs with the SQL Server service account’s privileges so impersonation should be used to ensure that the caller’s privileges are used when controlling access to external resources specified by user input.

UNSAFE
This permission extends the “External” set of permissions and allows the assembly to call unmanaged (and hence uncontrolled code).

Note that even with “UNSAFE” mode the integration code prevents a number of .NET Framework libraries from being used – compilers, window managers, enterprise service libraries and others are blocked as their use within the SQL Server does not make sense.
It is recommended that the DBA restrict the use of External/Unsafe code and that they apply stricter requirements in terms of code-review and permissions design if their developers request these higher levels of permission for their code.

Source Code Management
CREATE ASSEMBLY loads the binary assembly into the SQL Server database, there is no way of loading the source at the same time – it is left to the DBA to manage the source code that was used to create the assemblies. While it is likely that third party software will supply only binary codes (and equally likely that the third party will provide professional technical support in the case of issues with their software), it is important that the DBA establish a firm process for managing source code created by their developers before its absence becomes a problem.

The Programming Paradigm section above made recommendations around the tools provided to application developers – if these recommendations are followed it becomes relatively easy for the DBA to enforce solid change control policies and procedures and truly delineate between development/test systems and those that run the production system. Using SQL Server 2005, new security features and DDL triggers can restrict access and commands (or at least audit changes) to better enforce change control policies of the production environment. If desired, DDL Triggers can be used to prevent all DDL (Data Definition Language) statements (or specific statements or groups of statements) within a database.

Note that code should never pass from development to production without recompilation to ensure that code reviews with all relevant stakeholders have reviewed the correct code and all dependencies have been supplied.

· While it is recommended that Developers exploit Visual Studio’s auto-deployment features in testing – for maximum productivity during the development coding cycle – once complete, developers should pass only source code and compilation command files to their DBAs for deployment.

Note that the compilers are freely redistributable with the .NET Framework so there is no requirement for a DBA to install Visual Studio unless they intend to use its features for code review/debugging purposes.

· DBA’s should take a copy of the source code and place it “in escrow” once code review and recompilation (using the compilation command file) has taken place – this protects the code even if it is accidentally deleted from development source systems.

· It is recommended that a source copy be associated with each database that has loaded the assembly. This means that a single copy of the source code might exist in the development code tree and several (one per database) in the DBA tree. Once the assembly has been loaded into the database with the CREATE ASSEMBLY command any supporting files (such as source codes and documentation) can also be loaded using the ALTER ASSEMBLY command, as depicted below:

	ALTER ASSEMBLY LeastSquaresSqlFunction
ADD FILE FROM 'D:\Production System\Source Code\Least Squares\LS1.cs';

· Productivity Tip
Note that the ALTER ASSEMBLY command supports the loading of multiple files with a single statement.
· Both the DBA/Developer should annotate their source control systems when checking in code so as to provide an audit log of changes.

· The WinDiff tool (or Visual SourceSafe Compare) is excellent for comparing source code to identify changes. Reviewing only the differences can shorten the code re-review process when passing patches forward from development to production. For more details on using WinDiff, refer to the Microsoft Developer Network library download for WinDiff.

· Productivity Tip
When Visual Studio is used to build programs that exploit the SQL Server Database Engine .NET Framework Programming api the build output pane contains the compiler command line that is being used – this can be cut and pasted into a release command file that the DBA can use to recompile the program.
Release Management
Once source code is protected by professional source control and developers become used to providing source and compilation command files then release management becomes much more resilient to problems caused by code and schema mismatches. (See the final “Futures” section for more information on why this is especially important)

The SQL Server 2005 toolset makes it easy for DBA’s and Developers to work together within a common source code repository. The SQL Server 2005 Management Studio application can load/save scripts from source control applications such as Microsoft Visual SourceSafe and many others.

[image: image2.emf]`

``

`

Production Operations DBA ServersDevelopment DBA Server

Code Promotion

Developer Workstations

DBA’s can be given read access to developer source code projects in order to copy releases forward into projects that contain the scripts and source codes that relate to a specific system/release. Another option is for Release Managers to extract the appropriate versions of the source codes and place them in a folder that the DBA can access in order to recompile and load into the shared SQL Servers.

Controlling code promotion is a key role for DBA’s – allowing developers to deploy directly into shared systems will almost inevitably result in assemblies without controlled source code, and errors when the code is finally deployed into production (either immediately as the recompile picks up the wrong version of source code and creates code that was never tested, or eventually as problems cannot be reproduced in test systems as the production assembly cannot be debugged as the source doesn’t match).

The sample below illustrates a C# program compile command using the freely distributable csc.exe (the C Sharp Compiler, distributed with the .NET Framework)

	Csc.exe /noconfig /nowarn:"1701;1702" /warn:4 /define:DEBUG;TRACE /reference:C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215\System.Data.dll /reference:C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215\System.dll /reference:C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215\System.Web.Services.dll /reference:C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215\System.XML.dll /debug+ /optimize- /out:obj\Release\MainframeWebService.dll /target:library IBMSystemCode.cs AssemblyInfo.cs "Web References\com.Mainframe.webservices\Reference.cs"

In the case of a program that invokes a web service a further step is required to generate the serialization code, this is illustrated below. The Sgen program (installed with the .NET Framework 2.0 SDK and found in C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin) will create an assembly called “MainframeWebService.XmlSerializers.dll” that can be registered in SQL Server 2005 using the CREATE ASSEMBLY command or user interface

	Sgen.exe /n /f MainframeWebService.dll

Use the Transact-SQL below to register both of the assemblies:

	CREATE ASSEMBLY [MainframeWebService]
 AUTHORIZATION dbo
FROM 'C:\MWS\bin\Release\MainframeWebService.dll'
 WITH permission_set = external access
go

CREATE ASSEMBLY [MainframeWebService.XmlSerializers]
 AUTHORIZATION dbo
FROM 'C:\MWS\bin\Release\MainframeWebService.xmlserializers.dll'
 WITH permission_set = safe
go

The code above has compiled the code supplied by the developer, generated serialization code and then loaded both assemblies into SQL Server 2005 for use in CREATE FUNCTION/PROCEDURE etc statements.

· Productivity Tip
Note that the serialization code is loaded after its parent assembly. Reverse the order and the parent will be autoloaded in ‘stealth’ mode, requiring an ALTER ASSEMBLY … WITH VISIBILITY = ON to uncloak it for use in CREATE statements.

By allowing developers to reach maximum productivity with professional tools and database development environments that are populated with a good sample of production data; together with controlled code promotion, the DBA can deploy the CLR technology without risk of compromising system stability.

Performance Monitoring
If the DBA installs SQL Server 2005 and then starts up the Windows System Monitor (PERFMON.EXE) they might be disappointed to see only a single SQL Server CLR counter (SqlServer:CLR “CLR Execution”), giving cpu statistics summed across the server.

[image: image17.emf]However this is misleading as the majority of counters live in the .NET CLR group of counters at the top of the performance object list and they can be filtered by the “sqlservr” process name.

· Productivity Tip
Note that a server running multiple SQL Server instance processes, each with active CLR code) will not be easily distinguished in this list, so it is suggested that these be combined with the instance specific “CLR Execution” to identify the active instance by total cpu activity

There are multiple sets of counters that aid in understanding the health and activity of programs running in the SQL Server hosted runtime:

· .NET CLR Exceptions – the Exceptions/Sec counter can provide an early warning of problems in application code – if the value is larger than usual (developers can use exceptions for normal functionality, not just for error handling) then application failures may be happening and further investigation might review logs for errors.

· .NET CLR Loading – SQL Server isolates code between databases by using an AppDomain (a CLR concept that provides a self-contained runtime environment for programs); this set of counters enables monitoring of the number of AppDomains and the number of assemblies loaded in the system. Too great a number might indicate “procedure cache” like pressure on the system and require action to merge databases to share assemblies and AppDomains.

· .NET CLR Memory – provides detailed information about the three types of CLR heap memory as well as garbage collection, these counters can be used to monitor CLR memory usage and to flag alerts if the memory used gets too large – this might indicate code problems with copying or sizing/volumes of data requiring code redesign to use less memory.

· .NET Data Provider for SQL Server – provides information on the number of connects and disconnects per second. This is useful for capturing activity at the database level (for code that connects back to the SQL Server rather than returning external or processed parameters) as this counter breaks down to the database level (by AppDomain) as depicted:

[image: image3]
In addition to the System Monitor counters above, it is also possible to get a considerable amount of information from the SQL Server Dynamic Management Views (DMV) that present SQL Server “Operating System” (os) data, some useful sample queries are captured below:

	-- Loaded Assemblies (run in each database)
SELECT sa.[name]

, ad.[appdomain_name]

, clr.[load_time]
FROM sys.dm_clr_loaded_assemblies AS clr

INNER JOIN sys.assemblies AS sa

ON clr.assembly_id = sa.assembly_id

INNER JOIN sys.dm_clr_appdomains AS ad

ON clr.appdomain_address = ad.appdomain_address

	-- SQL CLR Memory Usage
SELECT mo.[type]

, sum(mo.pages_allocated_count * mo.page_size_in_bytes/1024)

AS N'Current KB'

, sum(mo.max_pages_allocated_count * mo.page_size_in_bytes/1024)

AS N'Max KB'
FROM sys.dm_os_memory_objects AS mo
WHERE mo.[type] LIKE '%clr%'
GROUP BY mo.[type]
ORDER BY mo.[type]

	-- SQL CLR Wait Statistics
SELECT ws.*
FROM sys.dm_os_wait_stats AS ws
WHERE ws.wait_type LIKE '%clr%'

	-- Requests that are currently in SQL CLR

SELECT session_id, request_id, start_time, status, command, database_id,
wait_type, wait_time, last_wait_type, wait_resource, cpu_time,

total_elapsed_time, nest_level, executing_managed_code

FROM sys.dm_exec_requests
WHERE executing_managed_code = 1

	-- Query performance and time spent in SQL CLR.
SELECT
(SELECT text FROM sys.dm_exec_sql_text(qs.sql_handle)) AS query_text, qs.*
FROM sys.dm_exec_query_stats AS qs
WHERE qs.total_clr_time > 0
ORDER BY qs.total_clr_time desc

	-- Obtaining CLR Execution performance counter values.
SELECT object_name, counter_name, cntr_value, cntr_type

FROM sys.dm_os_performance_counters

WHERE counter_name LIKE '%CLR%'

Debugging code
SQL Server 2005 and Visual Studio 2005 are tightly integrated, with the SQL Server tools addressing the needs of the DBA and Business Intelligence communities and the Visual Studio Integrated Development Environment targeted at the professional developer whether they be working with client, web, middle-tier or database software systems.
This functional separation points to the roles that the DBA and the developer play in the debugging process:

· The DBA uses SQL Server Profiler against test SQL Servers to trace database activity

[image: image4]

· The developer uses the Visual Studio debugger to trace code execution as well as SQL Server Profiler on their personal SQL Server (developer edition) to trace database activity. The debugger enables end-to-end debugging, where execution can be traced from client, to web server, to business object through to Transact-SQL and Database Engine .NET Framework Programming API code running in the SQL Server, opening up the code and its state and thus enabling extremely productive debugging during development.

[image: image5]
This combination of tools enables the DBA to focus on the operation of the SQL Server, understanding and optimizing the query workload (as with all previous versions of SQL Server); and provides the developer with a set of tools that enable rapid application development.

· Productivity Tip
The debugging environment for the Database Engine .NET Framework Programming API does not support multiple concurrent debugging, so it is recommended that developers be equipped with their own development SQL Server instances so as to make full use of the Visual Studio debuggers.
Warning signs
This section suggests a few guidelines to aid the DBA in troubleshooting and reviewing code written to the Database Engine .NET Framework Programming API. This is not a complete list, it is recommended that development and DBA teams get together to agree on their own standards (current Transact-SQL standards are a good starting point) to ensure agreement on what makes a good versus a bad program.

· Lack of set based operations (loops within loops)

Developers who are unfamiliar with SQL Server syntax have been known to replace JOIN clauses and sub SELECT clauses with complex nested cursors; there are times when this is justified (where each row of the outer table controls which other tables are required for further processing, itself a potential design problem (). This code usually looks like:

getdata()

foreach (datarow in datatable)

getdata()

foreach (datarow in datatable2)

etc

and is usually replaced with a simple INNER JOIN

This behavior is easily captured in SQL Server Profiler as the inner loops can generate large numbers of query bursts against the server.

· Cpu intensive operations in the clr

Extremely complex logic can be delivered in the .NET Framework languages with greater ease than the rather clumsy Transact-SQL constructs, this means that the SQL Server could soon become an unscalable bottleneck (unlike middle-tier services that can usually be load balanced and scaled out). The cost column in the sys.dm_clr_appdomains table can be used to monitor CLR cpu costs.

Provided the usage suggestions in earlier sections of this document are observed then this should not be a major issue (and the migration of function to the middle-tier is a fairly trivial coding task).

· Instantiating large objects in memory

Transact-SQL in SQL Server 2000 does not offer many ways to create large objects, probably the worst being the ability to pass large IMAGE or N/TEXT parameters into a stored procedure (most spool into the TempDB as @TABLE variables or #TEMP tables); this is not so in the SQL Server 2005 .NET Framework runtime environment where ADO.NET dataset and home-grown user collections can place large and potentially un-scalable demands on heap memory. Use the System Monitor counters to monitor memory usage as code flows through from development to production to ensure that poorly written code doesn’t make it through.

Solutions to this problem are similar to those that would be observed in the middle-tier:

1. Use paging to get subsets of data into memory

2. Ensure that data is passed by reference rather than by value

3. Move aggregated data around rather than detail-level data

· Error Handling

The Database Engine .NET Framework Programming API supports state of the art error handling from the various supported languages, so there is simply no excuse for poor error handling – any external operation such as database, file system or web service access, or operations that risk overflow/underflow exceptions should be wrapped in well structured error handling code.

Errors can be passed back to SQL Server by executing the RAISERROR command with SQLContext.Pipe.ExecuteAndSend(). Note that Transact-SQL error handling is considerably improved in SQL Server 2005 so that developers should be able to handle RAISERRORS from their code.

Raising an exception is safer than returning an error code as many developers can forget to check the @@ERROR object after a call to generic code.

· Unsafe Code Issues

The DBA should be extremely reluctant to register code as UNSAFE, especially in shared instances, as it allows the developer to call unmanaged code, which in turn can perform “unverified” tasks (in the other code security modes SQL Server looks into the assembly that is being registered and ensures that only authorized classes and calls are being made)

Unsafe code and Unmanaged code has full access and runs at a high privilege level so it should be fully code reviewed before deployment. Particular attention should be paid to all parameters (are they being validated and verified?) and to any connections back to the SQL Server to ensure that transaction boundaries are being respected so that the system is not left in a partially updated state. Finally the code should be checked to ensure that it doesn’t display error message dialogs (which obviously make no sense on the server)

· User Defined Type Issues

User Defined Types should be used with caution, as well as the 8KB size limitation discussed in earlier sections they have other limitations:

1. They are read/written as an atomic object

2. The implementation code is schema bound once in use, so the cost of change to an existing type is potentially high

Looking beyond SQL Server 2005
SQL Server 2005 hosts the version of the .NET Framework runtime environment that simultaneously shipped with Visual Studio 2005, and it is anticipated that service packs and hotfixes will not change the version, however this is not a good assumption for future versions of SQL Server. As the capabilities of the .NET Framework evolve it is likely that future SQL Server releases will switch to make use of these new facilities. With any major version change there are both new and deprecated features, so a wise DBA should prepare to cope with this future change.

The following table can be used by application developers to test the version of the .NET Framework in use by SQL Server (note that this query will return an empty string if the CLR is not activated) – generally the major version is all that will need to be checked unless the application requires features introduced by minor releases:

	-- Will return the version if the .NET Framework has been used
SELECT p.[value]
FROM sys.dm_clr_properties AS p
WHERE p.[name] = N'version'

-- Will return the version even if the .NET Framework is unused
-- Test the version of the Microsoft .NET Runtime Execution Engine

SELECT lm.product_version
FROM sys.dm_os_loaded_modules AS lm
WHERE lm.[name] LIKE N'%\MSCOREE.DLL'

At the time of writing this whitepaper Windows processes can only host a single version of the .NET Framework runtime environment, and while this is not a certainty for future releases it is possible that a future version of SQL Server will:

· Require code recompilation – ensuring that the DBA’s copy of source codes are kept in synch with the code loaded into the SQL Server will permit easier recompilation.

· Require code modification – this will be a certainty to take advantage of new API and added options to existing API, and a possibility if existing API/options are deprecated. Management of source and an awareness of API usage will go a long way to allowing accurate impact analysis and change costing.

· Require more than one .NET Framework runtime to be loaded if “down level” code is detected in the SQL Server – this could lead to better investment protection at the expense of performance so ensure that the tradeoff is understood.

The DBA who ensures that their company’s source code is managed; that developer API usage is monitored; and who takes the time to ensure that the impact of future changes are understood; will ensure that their systems are protected from unplanned and costly rewrites and performance impacts.

Summary
This whitepaper has looked at the SQL Server 2005 .NET Common Language Runtime integration through the eyes of the conservative database administrator.

The sections above have:

· Proposed processes and procedures for ensuring safe and successful deployment of this new capability

· Provided a number of catalog and dynamic management view queries aimed at opening up the database for the DBA, with easy access to lists of objects and information about the state of the system

· Suggested the toolset required by the DBA and their developers in order to maximize their productivity and drilled into debugging and tracing.

Care has been taken to provide examples of situations where using this new capability might not be appropriate – the saying that a hammer regards every problem as a nail applies here, it is important that the richness of SQL Server 2005 CLR integration be put to best purpose rather than for every purpose.

The most important lesson to be learned from this paper is that the CLR integration provides a new and powerful toolkit for application development with many scenarios where it can add enormous productivity and unlock new options for serious enterprise systems.

Additional SQL Server 2005 Resources

Free Resources on Microsoft.com, MSDN and TechNet
MSDN SQL Server Developer Center
MSDN Whitepaper: An Overview of SQL Server 2005 for the Database Developer

MSDN Whitepaper: Processing XML Showplans Using SQLCLR in SQL Server 2005

MSDN Whitepaper: Using CLR Integration in SQL Server 2005

MSDN Whitepaper: XML Support in Microsoft SQL Server 2005

MSDN Whitepaper: XML Options in Microsoft SQL Server 2005

MSDN Whitepaper: What's New in FOR XML in Microsoft SQL Server 2005
MSDN Whitepaper: XML Best Practices for Microsoft SQL Server 2005

MSDN Whitepaper: Usage Scenarios for SQL Server 2005 Native Web Services

MSDN Whitepaper: Managed Data Access Inside SQL Server with ADO.NET and SQLCLR

MSDN On-demand Webcasts

MSDN Live Webcasts

SQL Server 2005 Hands-On Labs

SQLCLR Hands-On Lab Manual
Microsoft SQL Server TechCenter on TechNet

Miscellaneous Resources
Sample Book Chapters for SQL Server 2005 is a list of chapters posted from a variety of authors for books related to SQL Server 2005.

Hosting the .NET Runtime in Microsoft SQL Server on the Association for Computing Machinery (www.ACM.org). To access this article you need membership in SIGMOD, the ACM, or you can purchase just this article for download.

Service Oriented Database Architecture by David Campbell, also on the Association for Computing Machinery (www.ACM.org). To access this article you need membership in SIGMOD, the ACM, or you can purchase just this article for download.[image: image6.wmf][image: image7.wmf][image: image8.wmf][image: image9.wmf][image: image10.wmf][image: image11.wmf][image: image12.wmf][image: image13.wmf]
T-SQL

CLR

XML

Computation & Framework access

Relational data access

Semi-structured�data access

Code & Build

Deploy

Module is loaded into SQL Server�(Portable & integrated with SQL�(No “lost” code

[image: image18.wmf][image: image19.emf][image: image20.png][image: image21.png][image: image22.png]