
1

Professional

Still Writing Your Standard
Stored Procedures by Hand?
Al Corwin

“John Henry was a steel-driving man.”

MOST of the Microsoft SQL Server developers I
work with and talk to are also Visual Studio
.NET developers. Unfortunately, that doesn’t

mean that they’re using all of the goodies in the .NET IDE
that they could. And that’s a shame, because .NET is just
packed full of time-saving, error-eliminating tools for
database developers.

For example, I see project after project where
developers are still writing their standard stored
procedures by hand. By “standard stored procedures,”
I mean the straightforward ones for INSERT, SELECT,
UPDATE, DELETE, and SELECT ALL. You can do the
math: If you limit your applications’ database access to
stored procs, that means one of each for almost every
table in your database.

It doesn’t matter how fast you can write (or cut,
paste, and modify) a stored proc, you can’t compete with
automation. If I can just push a button and get the job
done, I’ll crush anyone who tries to compete via hand-
coding. I could probably even generate an entire set
before the competition would finish a single line.
Furthermore, auto-generated code almost never contains
any errors. Now, maybe you’re a great coder (and typist),

but it’s not even a fantasy for most people. It’s been my
experience that, as long as you get the initial setup
configuration and rules right, code generators pretty
much work as advertised.

There are several ways that you can generate the
basic set of stored procs really quickly. You can acquire
any of a number of commercial, shareware, and freeware
tools to handle the task. Or, you can read books such
as Kathleen Dollard’s excellent Code Generation in
Microsoft.NET that explain how to write your own.
However, if Visual Studio .NET is installed on your
computer, there’s an easy solution at hand: the Data
Adapter Wizard. [See also her editorial on code generation at
www.ftponline.com/vsm/2004_09/magazine/departments/
guestop/default.aspx, her site at www.gendotnet.com, and
sample chapter 1 and source code from her book at
www.apress.com/book/bookDisplay.html?bID=212 and
www.apress.com/ApressCorporate/supplement/1/212/
1590591372-1625.zip.—Ed.]

The Data Adapter Wizard
If you create a project with a form in it (Web or Windows
forms are both fine) and drag a SqlDataAdapter from
the toolbox onto the form, the Data Adapter Wizard
will start. Click the Next button when the introductory

Figure 1. Specifying a connection. Figure 2. Selecting a query type.



2

screen appears.
The first piece of information that the Wizard needs is

the data connection you want it to use—see Figure 1.
(You’ll be able to create a connection at this point if you
aren’t already connected to your target database.)

Next, the Wizard asks you to choose a Query type
(see Figure 2).

You obviously want the second choice, Create New
Stored Procedures, but note how easily a .NET developer
can provide a wrapper for any stored procedure using the
third choice. This used to be a tedious and error-prone
chore. Clicking the Next button brings you to the Create
Stored Procedures screen (see Figure 3).

The dominant item is a textbox where you can type
in a valid T-SQL Select statement. Don’t! You can fill this
textbox much more easily by using the Query Builder,

conveniently accessible by clicking the Query Builder
button just beneath the right side of the textbox. This
causes the Query Builder to appear with the Add Table
dialog displayed (see Figure 4).

Those of you who have used the Query Builder in
Microsoft Access will immediately recognize this
interface. Those who haven’t will find this a joy to use
and a piece of cake to learn.

The Add Table dialog shows a list of tables in your
selected database. Note that you can also choose Views or
Functions, but we’ll just note that and go on. For the
moment, pick one of the simpler tables (a table with a
single key field) in your database by selecting it and
clicking the Add button (see Figure 5).

Close the dialog box and check each field in the order

Figure 3. Don’t risk typos by typing it yourself. Figure 4. Instead, use the Query Wizard.

Figure 5. Choose the table(s). Figure 6. Add the criteria.



3

you want it to appear in the resulting Recordset. In the
row in the grid dedicated to the primary key of the table,
add a parameter in the Criteria column (see Figure 6).

Note that the SQL statement is constructed for you
right below the Column Selection grid. (You can actually
write some very complex queries with this tool.) When
you’re done selecting the fields and specifying the criteria,
the statement should be a Select query that returns, by
column name, each field in the table for the row that
matches a passed in primary key. Click the OK button to
close the dialog and return to the Generate Stored
Procedures screen (see Figure 7).

Note that your newly defined query is now in the
textbox. If the query is what you want it to be, click the
Next button to move on to the next screen, shown in
Figure 8. (See the sidebar for a description of the
Advanced Options.)

Only one chore needs to be done on this screen,
but do it carefully. You must assign a name to each new
stored procedure, and a convention is essential. For
example, all of our tables are named with plural nouns
like “Customers” or “Associations.” We therefore replace
“New” in the suggested name with the singular form of
the table name. For example, the four queries for the
Customers table would be named CustomerSelect
Command, CustomerInsertCommand, CustomerUpdate
Command, and CustomerDeleteCommand (a little cut-
and-paste makes this a snap).

Leave the other options set to their defaults. Note
that this will create the stored procedures within the
database—which is the whole point. Click the Next
button to generate the stored procs.

The next screen will tell you whether or not the
Wizard was able to generate them. I haven’t seen it fail
yet, but I always check. Note also that the stored procs

aren’t actually saved to the database yet; they’ve been
generated and are stored in memory. Click the Finish
button to write the stored procedures to your database.

With four of them out of the way, you’re almost done.
Are they correct? You can make money giving large odds
that they are, but you’d better review and test them
anyway. If you find a problem, look first to your table
definition for the source of the error. Your table definition
may be flawed, but the Wizard always builds the correct
set of queries for the definition provided.

For example, let’s say that you’ve decided to
implement the key field as an identity column, but that
that decision hasn’t made it into the table implementation.
The field was an integer and the primary key, so it looked
much pretty much like it was supposed to. This is
something that can even slip through a well-run design
review (yes, been there, done that), but the Wizard catches
it every time. If your INSERT query contains an input
parameter for the key field, the only explanation is that
the key field isn’t an identity column.

The last thing you need to do to round out the
standard set is to create the Select All stored procedure for
the table. You can write this by hand, since the basic Select
All stored procedure is simply:

SELECT * FROM TableName

And that, my friends, is all there is to creating the
stored procedures. You’d already be well ahead of the
game if that was all the work that the Wizard had done
for you, but it turns out that that’s not even the half of it.
The Wizard has also generated all of the wrapper code
that these stored procedures will require to be used by the
Web or Windows application.

To see this code, open the Code Window for the form

Figure 7. All done! Figure 8. Don’t forget to name your stored procs.



4

you dragged a SqlDataAdapter onto at the start of this
process (F7 if the form is open in the Designer window).
In the Code Window, there’s a collapsed section called
“Web Form Designer generated code.” Expand that
region, and take a look at the code that was generated to
work with the newly created stored procedures.

It’s a lot of code, at least 50 lines for even the smallest
table, and the lines are long and complex. Writing code
this complex by hand would be painful, tedious, and
very time-consuming. No, the code isn’t object-oriented
or reusable, and we certainly don’t want database code
to live in the user interface, but these minor deficiencies
can be fixed far more easily than writing this code
from scratch.

Conclusion
Is the Data Adapter Wizard perfect? Almost! It’s easy to
use, configurable, generates errorless code, and it is
lightening fast.

How fast is it? On the last project that I wrote my
stored procedures by hand, I averaged four hours per
stored procedure for writing, testing, debugging, and
so forth. On the first project where I used this Wizard,
I averaged less than five minutes to accomplish the
same goal. With 100 tables in the project requiring

approximately 500 standard stored procedures, a
year’s worth of work at my former pace could now be
accomplished in less than two weeks.

How easy is it to learn? Hey, I’m old and slow, and it
only took me 20 minutes. If you can read, you can be a
Data Adapter Wizard wizard in no time at all. With just a
little more effort, you can also learn to use the Wizard to
build a highly reusable set of helper classes to support the
new stored procedures.

Remember John Henry. He lost to the machine
heroically and foolishly. Put the machine on your side
unless you want to “die with a hammer in your hand.” It
takes much more work than I’ve described here if you
want to push a button and generate all of your standard
stored procedures, but just these steps will get you 40
percent of the benefits. If you apply several more steps
that are almost as simple, you can get over 90 percent of
the benefits. ▲

Alan Corwin teaches the High Performance Data Integration course in

the University of Washington’s Advanced Web Development program. Al

has been a software developer and trainer for more than 20 years and

today heads Process Builder, which specializes in the rapid development

of persistence frameworks using Microsoft SQL Server and VisualStudio

.NET. abc@processbuilder.com.

Advanced Options
The Advanced Options default to the settings that work

best for an updatable data set controlled by a data adapter.

Don’t change them unless you have an explicit reason for

doing so.

If you click the Advanced Options button on the Generate

Stored Procedures screen, the screen shown in Figure 9

appears. As you can see, there are three advanced options. By

default, all options are selected.

The first option gives you a choice between generating

just the Select stored procedure or the complete CRUD

(Create, Read, Update, and Delete) set. This box should be

checked if you intend to allow changes to the table.

The second and third options are only available when the

first is selected. You don’t have to worry about how changes

will be managed if there aren’t any changes; the same goes for

an immutable data set.

Turn off the second option (optimistic concurrency) if it’s

likely that two (or more) people would be trying to change the

record at any one time.

The third option, “Refresh the Dataset,” adds a Select

statement to the end of the Insert and Update stored

procedures. This is particularly helpful when INSERTs

and UPDATEs are accomplished with the data adapter’s

Update method.

Figure 9. The Advanced SQL Generation Options screen.


